Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Heterogeneous landscapes can influence the development of convection through the generation of thermally driven mesoscale circulations. To assess the impacts of these circulations and their interaction with sea breezes, we simulated convection in an idealized coastal environment using the Regional Atmospheric Modeling System (RAMS). We compared simulations with striped patterns of surface vegetation to those of uniform vegetation to identify the importance of vegetation heterogeneity in impacting convective development. Under dry soil conditions representative of those during the Tracking Aerosol Convection Interactions Experiment (TRACER) and Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment (ESCAPE) campaigns in June 2022, we found that these vegetation-induced circulations, referred to in the literature as “forest breezes,” are more important than the sea breeze in determining the location of convection initiation. Convection and precipitation are also found to be favored over forests and suppressed over pasture and suburban landscapes as a result of greater surface sensible heat flux over the forest. Our findings also indicate that forest breezes are important for initiating convection along the boundaries of the forest, but that cold pools may play a key role in propagating the forest breezes toward the center of the forest stripe. In our simulations, the collisions of these breezes in the center of the forest stripe lead to uplift and strong convection there; however, a different width of the forest stripe would alter when the forest breezes collide or whether they collide at all. The presence of these cold pools may therefore impact the “ideal stripe width,” the width of each vegetation stripe which maximizes domain-wide precipitation.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract. There is a continuously increasing need for reliable feature detection and tracking tools based on objective analysis principles for use with meteorological data. Many tools have been developed over the previous 2 decades that attempt to address this need but most have limitations on the type of data they can be used with, feature computational and/or memory expenses that make them unwieldy with larger datasets, or require some form of data reduction prior to use that limits the tool's utility. The Tracking and Object-Based Analysis of Clouds (tobac) Python package is a modular, open-source tool that improves on the overall generality and utility of past tools. A number of scientific improvements (three spatial dimensions, splits and mergers of features, an internal spectral filtering tool) and procedural enhancements (increased computational efficiency, internal regridding of data, and treatments for periodic boundary conditions) have been included in tobac as a part of the tobac v1.5 update. These improvements have made tobac one of the most robust, powerful, and flexible identification and tracking tools in our field to date and expand its potential use in other fields. Future plans for tobac v2 are also discussed.more » « less
-
Abstract. Optimizing radar observation strategies is one of the mostimportant considerations in pre-field campaign periods. This is especiallytrue for isolated convective clouds that typically evolve faster than theobservations captured by operational radar networks. This study investigatesuncertainties in radar observations of the evolution of the microphysicaland dynamical properties of isolated deep convective clouds developing inclean and polluted environments. It aims to optimize the radar observationstrategy for deep convection through the use of high-spatiotemporalcloud-resolving model simulations, which resolve the evolution of individualconvective cells every 1 min, coupled with a radar simulator and a celltracking algorithm. The radar simulation settings are based on the TrackingAerosol Convection Interactions ExpeRiment (TRACER) and Experiment of SeaBreeze Convection, Aerosols, Precipitation and Environment (ESCAPE) fieldcampaigns held in the Houston, TX, area but are generalizable to other fieldcampaigns focusing on isolated deep convection. Our analysis produces thefollowing four outcomes. First, a 5–7 m s−1 median difference inmaximum updrafts of tracked cells is shown between the clean and pollutedsimulations in the early stages of the cloud lifetimes. This demonstratesthe importance of obtaining accurate estimates of vertical velocity fromobservations if aerosol impacts are to be properly resolved. Second,tracking of individual cells and using vertical cross section scanning every minute capture the evolution of precipitation particle number concentration and size represented by polarimetric observables better than the operational radar observations that update the volume scan every 5 min. This approach also improves multi-Doppler radar updraft retrievals above 5 km above ground level for regions with updraft velocities greater than 10 m s−1. Third, we propose an optimized strategy composed of cell tracking by quick (1–2 min) vertical cross section scans from more than oneradar in addition to the operational volume scans. We also propose the useof a single-RHI (range height indicator) updraft retrieval technique for cellsclose to the radars, for which multi-Doppler radar retrievals are stillchallenging. Finally, increasing the number of deep convective cells sampledby such observations better represents the median maximum updraft evolutionwith sample sizes of more than 10 deep cells, which decreases the errorassociated with sampling the true population to less than 3 m s−1.more » « less
-
Abstract A multi-agency succession of field campaigns was conducted in southeastern Texas during July 2021 through October 2022 to study the complex interactions of aerosols, clouds and air pollution in the coastal urban environment. As part of the Tracking Aerosol Convection interactions Experiment (TRACER), the TRACER- Air Quality (TAQ) campaign the Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) and the Convective Cloud Urban Boundary Layer Experiment (CUBE), a combination of ground-based supersites and mobile laboratories, shipborne measurements and aircraft-based instrumentation were deployed. These diverse platforms collected high-resolution data to characterize the aerosol microphysics and chemistry, cloud and precipitation micro- and macro-physical properties, environmental thermodynamics and air quality-relevant constituents that are being used in follow-on analysis and modeling activities. We present the overall deployment setups, a summary of the campaign conditions and a sampling of early research results related to: (a) aerosol precursors in the urban environment, (b) influences of local meteorology on air pollution, (c) detailed observations of the sea breeze circulation, (d) retrieved supersaturation in convective updrafts, (e) characterizing the convective updraft lifecycle, (f) variability in lightning characteristics of convective storms and (g) urban influences on surface energy fluxes. The work concludes with discussion of future research activities highlighted by the TRACER model-intercomparison project to explore the representation of aerosol-convective interactions in high-resolution simulations.more » « lessFree, publicly-accessible full text available August 4, 2026
An official website of the United States government
